Quiz 2 Solutions

1. Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $i+j$.
Solution. From class we know that a scalar field f undergoes its maximum rate of change in the direction of its gradient vector $\nabla f(x, y)$. Therefore, we have to find all points (x, y) where $\nabla f(x, y)$ is parallel to $i+j$. We can see that

$$
\nabla f(x, y)=(2 x-2) i+(2 y-4) j
$$

So we get $(2 x-2) i+(2 y-4) j=k i+k j$, for some $k>0$, giving $2 x-2=2 y-4$, or $y=x+1$. In other words, all the points where the direction of fastest change of f is $i+j$ lie on the line $y=x+1$.
2. Find the points on the hyperboloid $x^{2}-y^{2}+2 z^{2}=1$ at which the normal line (to the tangent plane) is parallel to the line that joins the points $(3,-1,0)$ and $(5,3,6)$.
Solution. Let $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ be any point on the hyperboloid that satisfies the condition given in the problem. Then $\nabla f\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(2 x^{\prime},-2 y^{\prime}, 4 z^{\prime}\right)$, and we know that the given line has direction numbers $2,4,6$. Therefore, $\left(2 x^{\prime},-2 y^{\prime}, 4 z^{\prime}\right)=k(2,4,6)$, for some $k>0$, giving $x^{\prime}=k, y^{\prime}=$ $-2 k$ and $z^{\prime}=\frac{3}{2} k$. Since $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is a point on the hyperboloid, we have that

$$
{x^{\prime}}^{2}-y^{\prime 2}+2 z^{\prime 2}=\left(1-4+\frac{9}{2}\right) k^{2}=1,
$$

so $k= \pm \frac{\sqrt{6}}{3}$. Hence, there there are two possibilities for $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, namely ($\pm \frac{\sqrt{6}}{3}, \mp \frac{2 \sqrt{6}}{3}, \pm \frac{\sqrt{6}}{2}$).

